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ABSTRACT

Based on searches for disabled homologs to known
proteins, we have identified a large population of pseudo-
genes in four sequenced eukaryotic genomes—the
worm, yeast, fly and human (chromosomes 21 and
22 only). Each of our nearly 2500 pseudogenes is
characterized by one or more disablements mid-
domain, such as premature stops and frameshifts.
Here, we perform a comprehensive survey of the amino
acid and nucleotide composition of these pseudo-
genes in comparison to that of functional genes and
intergenic DNA. We show that pseudogenes invariably
have an amino acid composition intermediate between
genes and translated intergenic DNA. Although the
degree of intermediacy varies among the four
organisms, in all cases, it is most evident for amino
acid types that differ most in occurrence between
genes and intergenic regions. The same intermediacy
also applies to codon frequencies, especially in the
worm and human. Moreover, the intermediate
composition of pseudogenes applies even though the
composition of the genes in the four organisms is
markedly different, showing a strong correlation with
the overall A/T content of the genomic sequence.
Pseudogenes can be divided into ‘ancient’ and
‘modern’ subsets, based on the level of sequence
identity with their closest matching homolog (within
the same genome). Modern pseudogenes usually have
a much closer sequence composition to genes than
ancient pseudogenes. Collectively, our results indicate
that the composition of pseudogenes that are under no
selective constraints progressively drifts from that of
coding DNA towards non-coding DNA. Therefore, we
propose that the degree to which pseudogenes
approach a random sequence composition may be
useful in dating different sets of pseudogenes, as well
as to assess the rate at which intergenic DNA accumu-
lates mutations. Our compositional analyses with the

interactive viewer are available over the web at http://
genecensus.org/pseudogene.

INTRODUCTION

We have identified pseudogenes in several completely
sequenced eukaryotic genomes, mapping their positions on the
chromosomes using BLAST (1) and related programs to search
against protein databases (2–6). Here, we define pseudogenes
as disabled copies of genes that do not produce a functional,
full-length copy of a protein (7). Operationally, these are iden-
tified as regions of the chromosome that are similar to known
proteins but contain obvious disablements (such as stop codons
or frameshifts) mid-domain. There are two types of pseudo-
genes: (i) duplicated pseudogenes, which arise from duplication
of a gene followed by an initial disablement (usually a premature
stop-codon or frameshift mutation); and (ii) processed pseudo-
genes, which arise from reverse transcription of mRNA tran-
scripts followed by reintegration into the genome and
subsequent disablement (8). Pseudogenes are of special
interest in the study of genomic evolution; since they are no
longer functional, their subsequent degradation through accu-
mulation of further coding disablements is generally not
subject to selective pressure. Therefore, their sequence compos-
ition reflects the biochemical requirements of the gene to
which they are related (as they are clearly similar to functional
proteins) and the accumulation of mutations inherent in non-
coding DNA. Consequently, they serve as markers to measure
the overall mutation processes and the stability of the genomic
sequence (9).

In an earlier large-scale survey of pseudogenes in the worm
Caenorhabditis elegans (2), we examined a number of near-
extinct gene families with large numbers of pseudogenes. We
found that the amino acid composition of these pseudogenes is
at an intermediate level between genes and non-coding
DNA—the amino acid composition of non-coding regions
simply being translations of randomly selected intergenic
regions. This analysis clearly indicated that this is the result of
incremental mutations causing a drift towards overall chromo-
somal composition rather than a statistical artifact. Here we
have greatly expanded our analysis to include the yeast, fly and
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human chromosomes 21 and 22, and widened the scope to
include codon and nucleotide as well as amino acid composition.

It has been demonstrated that the dinucleotide composition
of eukaryotic chromosomes is homogeneous within an
organism, even for regions with high coding content (10).
However, the composition of genes is strongly affected by
evolutionary constraints and therefore may be statistically
‘unfavorable’ in the context of the genome as a whole, for
example, in codon use. Thus, pseudogenes might be expected
to drift towards a make-up similar to ‘random’ intergenic
DNA, even though they remain detectable by sequence
alignment. Although the mechanisms and rates of random
mutation (as well as gene loss) may differ across organisms—
leading to pseudogene populations that differ greatly in size
and composition—it is likely that dimer and trimer frequencies
will, across the entire set, change from that favored by genes to the
chromosomal bias. We have, in fact, observed this intermediate
composition in multiple organisms, both on the nucleotide and
implied amino acid level, in multiple organisms.

Our work follows upon a number of recent analyses of
proteome composition, especially in the context of evolu-
tionary relationships between organisms and in the broader
functional implications of sequence make-up (2,9–18).
Although intergenic DNA does not have an amino acid compos-
ition in the strict biological sense, this view is one of the most
useful for examining different features, since it results from
several different biases in sequence composition.

MATERIALS AND METHODS

Data sets

The yeast genome and proteome sequences (19) were obtained
from the Saccharomyces Genome Database (ftp://genome-
ftp.Stanford.edu/pub/yeast/SacchDB). For the worm genome
(20), we used the Wormpep18 database and the complete
chromosome sequences (December 1999 versions) available
from the Sanger Centre ftp site (ftp://ftp.sanger.ac.uk). For the
fly, Release 2 of the fly chromosomes (21) and protein predic-
tions was obtained from the Berkeley Drosophila Genome
project website (http://www.fruitfly.org). The Mycoplasma
genitalium and Escherichia coli genomes (22,23) were
obtained from GenBank (April 2001). The composition statistics
for the human genome were taken from chromosomes 21 and 22
(24,25). Genes were predicted using the program GenomeScan
(26); we have also used the Ensembl set for some comparisons.

GenomeScan finds 279 and 648 genes for chromosomes 21
and 22, respectively, while Ensembl lists 290 and 711 genes
(see Sequence Analysis for a detailed description). We also use
the most current releases of the human genome, including the
April 1, 2001 assemblies (http://genome.ucsc.edu) and release
1.0 of the Ensembl Project gene annotations (http://
www.ensembl.org and ftp://ftp.sanger.ac.uk). The release files
that we use in the current study are available from our website;
it is important to note that data files are constantly changing
given the ongoing nature of sequencing projects.

Pseudogene annotations

We derived sets of pseudogene sequences for the worm, fly
and yeast genomes and for human chromosomes 21 and 22 (2–4).
Pseudogenes were predicted by searching for homologies with
disablements in the genomic DNA aligned against the entire
SWISS-PROT (27) database plus the proteome of the organism
studied. This was done using the BLAST (1) and FASTX/Y
(28) alignment programs, with repeats masked using Repeat-
Masker (29), and low-complexity regions masked with SEG
(30) (settings ‘25 3.0 3.3’ and ‘45 3.4 3.75’). Specifically, for
yeast, pseudogenic sequences were extended at either end into
the optimal disabled open reading frame. A summary of all the
pseudogenes we annotated is shown in Table 1. Note that the
finding of all these pseudogenes involves a massive amount of
calculation. On average, one assignment of pseudogenes to
each 20 Mb of genomic sequence took at least 10 CPU days
(on a 1.2 GHz processor). Thus, the full set of assignments
reported here involved many months of sequence comparisons.
It is also worth noting that since most pseudogenes have
multiple disablements in the homologous region (for humans,
>90%), the possibility that assignments may in fact be func-
tional genes is negligible.

We assigned pseudogenes as processed or duplicated using
two criteria: first, we picked as candidate processed pseudo-
genes, all those matches that comprise >70% of the length of
the closest matching human Ensembl or SWISS-PROT data-
base sequence in a continuous segment. We allowed for any
obvious surrounding exon structure, and for known single-
exon human genes. Secondly, we assigned any genes with
evidence for a polyadenine tail as candidate processed pseudo-
genes. Pseudogenes were separately split into roughly equal
proposed modern and ancient subsets based on percent identity
to the closest Ensembl protein, divided around the median
score (FASTA identity of 79%).

Table 1. Statistics for pseudogene sets

Pseudogene identification used the process described in Harrison et al. (2), except for yeast. Some of the sets described here are
from intermediate data sets, so the total number may differ slightly from published results.

Organism No. of pseudogenes
(no. of residues)

No. of genes
(no. of residues)

Chromosome
size (Mb)

A/T content (%) Source

Worm 1836 (215 995) 18 680 (8 140 673) 99 63.1 (2)

Yeast 166 (34 099) 6280 (2 974 116) 12.3 61.7 (3)

Fly 114 (40 505) 14 332 (7 177 167) 116 56.2 (5)

Human 325 (77 031) 927 (447 410) 68.5 54.5 (4); chromosomes
21 and 22 only
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Sequence analysis

Coordinates for introns and exons for human genes were
extracted using the predictions from GenomeScan (26). Gene
composition statistics were taken from assembled exons or full
amino acid predictions. Amino acid statistics for pseudogenes
were made using the FASTA-generated alignment; codons
were extracted from the chromosome based on start coordin-
ates and implied positions from alignments, skipping over
frameshifts and partial codons.

The implied composition of intergenic DNA was calculated
using the first frame of the forward strand only (other frames
yield identical results). Dinucleotide predictions (and trinucle-
otide, where distinct from codons and residues) used every
frame. No masking for other features (including repeats) was
used for intergenic statistics, but gaps (indicated by ‘N’ in the
raw sequence) were passed over. Masking does not produce
significantly different statistics, even in the human chromo-
somes where removing repeats nearly halves the total sequence
length. Codon frequencies in all cases refer to the usage
compared with synonymous codons, so that Trp and Met
codons will have the same frequency in all features, no matter
what the trinucleotide composition.

RESULTS

Statistical characterization of composition

We have used a formula independent of scale to quantitatively
evaluate the compositional difference of two sets of features
(where a feature could be such things as ‘genes in the worm’ or
‘intergenic DNA in the human’). The similarity in residue
frequencies between any two features was determined by
treating each set as an N-dimensional vector and calculating
the ‘distance’ between these vectors. For a given sequence
element indexed by i (either amino acid, codon or dinucleotide),
we use the following notation for the absolute difference in
frequency between features A and B:

∆Fi(A,B) = |Fi(A) – Fi(B)|

Then distance can thus be expressed as:

where N is 20 for amino acids (21 if stop codons are included),
64 for codons and 16 for dinucleotides. This calculation is
most useful in determining the divergence of pseudogene
composition from the presumed original level, but as part of a
larger matrix can be used to define relationships across a larger
set. Since the D vectors here all have a sum of 1, distance is
always relative to this number, and average change for each
amino acid or codon depends on the value of N. We have
converted all distances to percent values here.

Amino acids in any group can also be treated individually: in
a large enough set of features, the standard deviation for the
frequency of each residue can be calculated. We have scaled
this figure to be comparable across the entire set by dividing by
the mean frequency. This allows the relative variability or
‘spread’ of each residue in a set of features to be expressed

quantitatively as well as qualitatively. Cysteine provides an
example; it has the third highest spread value due to the low
mean frequency but wide difference in frequency across the
genes. However, in the comparisons of pseudogenes, standard
deviation is less useful. For the purposes of plotting the
relationships between pseudogenes, genes and chromosomes,
we have simply sorted by values of ∆F(genes,intergenic), as
will be discussed in the results for pseudogenes. This quantity
is the difference in composition between genes and translated
intergenic DNA for each amino acid (or codon). Typically, this
value ranges from nearly zero (especially for Ser) to as much
as 0.04 for Ala, Asp, Glu or Phe, and 0.06 for the stop codon.

Genes versus non-coding DNA

We compare amino acid composition of genes and translated
intergenic regions in Figure 1. Several amino acids, in particular
Ile, Lys and Asn are extremely variable, and Cys usage in
human is twice that in yeast. Glu, on the other hand, is virtually
constant. Within a genome, different chromosomes tend to
have a very similar composition for both amino acids and
dinucleotides (10). Human chromosomes vary most for the
codons encoding Gly, Pro, Ile, Tyr and Ala, but frequencies for
most other amino acids are quite close, even for relatively short
chromosomes. We discuss the differences across the human
genome below.

A striking result is the influence of the A/T content of
genomes (Table 1) on the distribution of amino acid compos-
itions for genes (Fig. 1). This is apparent when we compare the
data in Figure 1 and Table 1. We observe that the ordering of
the organisms by their A/T content (Table 1) is also maintained
in the distributions of amino acid compositions (Fig. 1). Thus,
genes in worm and yeast—two genomes with relatively high
A/T content in the data set—have similar amino acid compos-
itions. The same applies to genes in the fly and human
genomes, which have relatively low A/T content. A similar
observation has previously been reported for less complex
genomes (31), and we propose that the main (but not exclusive)
reason for this is the effect of A/T content on codon usage.

Implied amino acid composition of pseudogenes

Figure 2 shows plots of the amino acid composition of pseudo-
genes from each organism versus the corresponding genes and
intergenic DNA; Table 2 lists the distances obtained from
these sets of statistics. The composition of most of the sets of
pseudogenes found is intermediate between that of genes and
non-coding regions. This is evident in the worm, both human
chromosomes, and the yeast genome; however, the fly pseudo-
genes have almost exactly the same composition as intergenic
DNA. The latter result may stem from a high underlying rate of
point mutations in the fly genome. In addition, the small
number of fly pseudogenes is consistent with the observed
high rate of genomic DNA loss in the fly (32) and is not
necessarily indicative of an especially ancient pseudogene
population.

Overall, 16 out of 21 amino acid types (including stop
codons) in the worm have occurrences between that of inter-
genic DNA and that of genes. This is reduced to 14 residues in
both human and yeast (sometimes less when individual chromo-
somes are used instead of all chromosomes). There are very
few cases in any organism where pseudogene frequencies
differ greatly from this intermediate range. More importantly,
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in Figure 2 we have sorted residues by ∆F(genes,intergenic),
showing that virtually all of the amino acids with large overall
divergence have an intermediate frequency for pseudogenes.

From the distances (without stop codons) shown in Table 2
and from the plots it is obvious that the worm pseudogenes are
overall closer in composition to intergenic DNA, while the
opposite largely holds for human; yeast is nearly exactly inter-
mediate. We have not plotted pseudogenes from multiple
organisms together because although the ‘direction’ of compo-
sitional drift is towards non-coding DNA in each organism,
their exact composition depends on their age or the amount of
mutation in each species. Therefore, we cannot directly
compare pseudogenes from different organisms. The type of
pattern shown in Figure 1 does not appear, since organismal
genome composition has little relation to mutation patterns and
rates on this scale.

Classes of pseudogenes

We divided human pseudogenes two different ways into
subsets: (i) We classified human pseudogenes as processed or

duplicated (Fig. 3A); these sets have distinct compositions but
do not have a consistent pattern relative to genes and intergenic
DNA. Some variations can be explained by the implied functional
characteristics of these sets; the processed pseudogenes have a
high number of disabled ribosomal proteins, whose higher Lys
content contributes to the peak frequency for this residue on
the plot. However, we cannot draw any conclusions about the
overall degree of mutation (and the corresponding relative age)
of the processed and duplicated subsets of pseudogenes. (ii) We
also then subdivided the processed human pseudogenes into
hypothetical ‘ancient’ and ‘modern’ subsets based on their
similarity to the closest matching human gene. Figure 3B
shows the composition of these groups relative to genes and
chromosomes, again sorted by ∆F(genes,intergenic). Modern
pseudogenes are generally closer to genes than intergenic
DNA, and again this relationship is clearest in the residues
with highest variability (only two out of the top 10 are anoma-
lous). The pattern seen in Figure 2 appears to be the cumulative
effect of both classes, and with smaller sets of pseudogenes
there are more cases of erratic frequencies for individual residues.

Figure 1. (A) Gene and (B) intergenic region composition for the 20 amino acids and stop signal (*) in the four eukaryotes. Residues are sorted in decreasing order
by standard deviation of gene frequencies across the organisms. Human genes are taken from GenomeScan predictions along chromosomes 21 and 22; for other
organisms the available complete proteomes have been used. Some gene sequences may include the terminating stop codon, thus there is some variation in the
frequency shown for this signal.
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Codon and dinucleotide usage

Pseudogene codon usage in both worm and human also tends
to lie between that of genes and intergenic regions. Of the
64 codons in worm pseudogenes, 47 have intermediate frequen-
cies and seven are within 5% of the frequency for another
feature. In human chromosomes 21 and 22, 49 and 53 codons,
respectively, are intermediate. Several codons in chromosome
21 have highly elevated frequencies—in particular, CAC,
CGT, GGA and GGT. If codon biases for individual amino
acids are examined instead, 56 and 59 codons (excluding Met

and Trp) in chromosomes 21 and 22 have a composition inter-
mediate between genes and chromosomes.

We have plotted the biases for the set of the codons forming
Arg in Figure 4, which best characterizes the pattern. Applying
the distance formula with N = 64 again indicates that human
pseudogenes are slightly closer to genes, while worm pseudo-
genes are closer to intergenic DNA. We have not attempted to
quantify codon bias in this manner, since it is dependent on
overall implied amino acid frequencies, and is only relevant for
individual sets of codons.

Statistics for pseudogene subsets again display the expected
distinction between ancient and modern sets. Whether all
codons or only Arg codons are sampled, the modern set tends
to have a bias closer to genes than less homologous pseudo-
genes. Processed versus duplicated pseudogenes again do not
follow any trend, rather varying by chromosome and scope of
comparison—though in Arg codons alone, processed pseudo-
genes are more closely related to genes (especially in chromo-
some 21).

Relationship to dinucleotide relative abundance

Gentles and Karlin (10) have shown in a large set of both
prokaryotic and eukaryotic organisms that dinucleotide
frequencies represent a distinct ‘signature’, consistent across
all chromosomes of a genome, and apparently distinct from
preferences towards individual base pairs. This is most evident
in the extremely low occurrence of the CG dimer in the human,
which we have calculated to comprise only 1.6% of all dimers
in chromosomes 21 and 22 (versus, e.g., 5.7% for GC). A

Figure 2. Compositon of ΨG in the eukaryotes. The amino acid content of pseudogene predictions is compared with the implied translation of unmasked chromo-
somes and identified genes. For the human, only chromosomes 21 and 22 are used in the plot shown. In each case, residues have been sorted in order of the differ-
ence in frequency between genes and chromosomes [∆F(genes,intergenic)].

Table 2. Distances for features in eukaryotic genomes
(without stop codon)

Column headings apply only to the named feature within the
same organism.

Intergenic regions (%) Genes (%)

Worm genes 7.04 –

Worm pseudogenes 3.31 4.49

Human genes 6.00 –

Human pseudogenes 4.92 2.91

Fly genes 6.30 –

Fly pseudogenes 0.96 6.67

Yeast genes 7.33 –

Yeast pseudogenes 4.92 3.56
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predictable result of this is the corresponding depletion of the
four Arg codons starting with CG in raw genomic DNA; AGA
and AGG instead comprise ∼80% of the full set. Human genes
maintain considerably higher levels of Arg CG codons,
perhaps since these are less susceptible to non-synonymous
substitution. However, other CG-containing codons are used
much more often in genes than their random frequency would
suggest, and CG levels are thus elevated overall throughout
human exons, at 4.2% in chromosome 22.

Worm does not have any example of this kind of discrepancy;
Arg codons in genes follow a considerably different pattern.
Though both the human and worm genomes are rich in adenine

and thymine, human genes tend to use CGC/G more than
CGA/T. Percent CG in pseudogenes increases relative to chromo-
somes to 2.2 and 2.6% in 21 and 22, respectively, again much
closer than expected from the amino acid distributions.

Web composition browser

We have made available an online browser (Fig. 5) that
summarizes and builds upon all of our results relating to amino
acid composition and eukaryotic pseudogenes, described at
http://genecensus.org/pseudogene. Data from other organisms
and features not discussed here are viewable along with
primary results through several plots and charts created based
on user input. Most of the data presented here is directly replicated
at this site in both numerical and graphical form. Results from
additional completed microbial genomes have been included in
the database for comparison. We have also created an additional
page focusing on the expanded human genome with a larger
presentation of the various sets of features now available.

DISCUSSION

We have surveyed nucleotide and amino acid composition
across pseudogenes, genes and intergenic DNA, the relation-
ship between coding and non-coding sequences and patterns in
mutations in disabled genes. Our analysis suggests a trend for
both genes and pseudogenes to assume the underlying compos-
ition of the genome, to the extent that this does not interfere
with biochemical function or result in potentially much less
stable codon usage. Though genes have amino acid compos-
itions distinct from that of translated intergenic DNA, they
clearly reflect the underlying levels of nucleotide usage in the
genomes as a whole. Pseudogenes can be viewed as genes
removed from selective constraints, and our results show that
the cumulative effect of mutations is to yield a sequence
approaching homogeneity with the surrounding non-coding
DNA. Our results can be affected by several factors, particularly
the size and statistical relevance of the data sets and issues of
compositional bias in the portion of the human genome
studied.

Literal statistical significance

The usefulness of the annotations relied upon here depends on
the size of our data sets. The scale of this analysis is large
enough to ensure that compositional biases are real rather than
random. For the composition of any pair of features, the chi-
squared statistic can be calculated by mutiplying the frequency
in either set of each amino acid by the total number of amino
acids in the observed set, and summing as shown:

The summation is for the 20 amino acids, where k = 20, O(i) is
the count for a particular amino acid in the observed set, and
E(i) is the count for a particular amino acid in the expected set.
For samples of the size used here, e.g. approximately 150 000
amino acids for genes in human chromosome 21 and 82 000
for human pseudogenes, the chi-squared value will be
extremely high even with only slight compositional differ-
ences, with a correspondingly low P-value. Even for features
that are nearly indistinguishable on a plot, the number of amino

Figure 3. Classifications of pseudogenes. Residues are sorted as above by
∆F(genes,intergenic). (A) Pseudogenes divided into putative processed and
duplicated sets. (B) Processed pseudogenes divided into recent and ancient sets
based on a median FASTA identity value of 79%.

Figure 4. Arginine codon bias in human chromosomes 21 and 22. Frequency
is out of all Arg codons, or Fcodon/FArg.
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acids is so large that the chi-squared statistic is always highly
significant.

In light of this, the distance calculations used here are more
indicative of the distinction between two composition figures.

Thus, the proteins in human and yeast have a distance of 7%,
while human and fly proteins have a distance of 3%. A distance
of 1% is usually negligible—this is about the average differ-
ence in implied amino acid composition between worm

Figure 5. Sample screen of the online composition browser. The database is accessible through a form that allows selection of any combination of features for
which amino acid composition has been determined. Included in the display is a plot of the compositions and statistics for each feature.
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chromosomes’ intergenic regions. However, this is affected by
the selection of particular features and thus by any distinct
composition they possess, discussed in the next section.

Expansion to the entire human genome

We have evaluated two sets of annotations for chromosomes
21 and 22. The set of predicted human genes in chromosomes
21 and 22, assigned using the GenomeScan algorithm, is close
in size and composition to the current Ensembl Project gene
predictions for these chromosomes. Using GenomeScan
allowed us to assign a large and relatively complete set of
genes at an early date, before the Ensembl predictions were
completed. More importantly, it gives a uniform set of predictions
for genes—in contrast to Ensembl, which combines gene iden-
tified by a variety of methods.

We have chosen here to concentrate only on chromosomes
21 and 22, the earliest and most thoroughly completed chromo-
somes, to ensure full coverage by pseudogene predictions and
accurate composition statistics. Incomplete sequences for other
chromosomes make it difficult to rely on homology searches as
undertaken here. For instance, as of September 2001, only 70%
of chromosome 1 is currently represented as actual nucleotides
rather than null bases (though these numbers are continuously
changing).

However, it is useful to evaluate how representative chromo-
somes 21 and 22 are of the rest of the draft genome sequence.
We have looked at the April 2001 assemblies of the Golden
Path to evaluate the similarity in composition of the smaller
chromosomes to the complete set. Human intergenic DNA
tends to vary most for the trinucleotides encoding Gly, Pro, Ile,
Tyr and Ala, but frequencies for most other amino acids are
quite close, even for the relatively short chromosomes we
studied. Distances between gene and intergenic amino acid
frequencies vary from 4.5 to 7%, with chromosomes 21 and 22
being close to opposite extremes. Although chromosome 22
tends to be most divergent for the variable amino acids, both
chromosomes have compositions that follow those of longer
chromosomes. Interestingly, however, in their intergenic DNA
they differ more from each other than most other pairs, with a
distance of 5.4%.

Though the genes used here and those from Ensembl have
similar compositions (distances of 1.2% for either chromo-
some), both are distinctly biased in composition relative to the
entire Ensembl set of approximately 27 000 genes. To evaluate
this bias (33), we have randomly sampled with replacement
sets of 500 genes from Ensembl (compared with totals of
approximately 300 and 700 for chromosomes 21 and 22,
respectively), and examined the distribution of amino acid
frequencies for these sets. Genes in chromosomes 21 and 22
have frequencies that often fall outside or at one extreme of the
random distribution. The residues Ala, Pro, Arg, Trp and Tyr
are all enriched, while Asp, Glu, Phe, Ile, Lys and Asn are
depleted. It is reasonable to assume that this corresponds to
functional differences in these genes. Nevertheless, substituting
the full Ensembl predictions for the chromosome 21 and 22
GenomeScan annotations in Figure 1A results in a substan-
tially similar plot (data not shown). This means that while there
are real differences in composition between the genes on chromo-
somes 21 and 22 and those in the full human genome, on the
scale of our analysis (particularly with regard to trends with
respect to other organisms) these differences are not significant.

Classification and dating by composition

One interesting application we see for such composition statistics
is dating of pseudogenes. We have tried to make this distinction
based on the degree of similarity to human proteins, and
simply divided ancient and modern sets around the median.
We would like to find a more precise method of classifying
pseudogenes by age, instead of depending entirely on the
results from BLAST and FASTA similarity. Our treatment of
amino acid composition in non-coding features relies on shifts
in frequency as representative of the amount of mutation
overall. This is not necessarily the case for an individual
sequence, which ideally needs to be examined on the scale of
codons—that is, taking into account synonymous as well as
non-synonymous mutations. Furthermore, it seems reasonable
to expect that codon bias will tend to reach that of chromo-
somes for individual homologies, but this may involve so great
an amount of mutation that non-synonymous changes will
make the homology undetectable by our methods. It is also
difficult to guess at the exact original sequence of the pseudo-
gene, especially in cases that are obviously duplicated and
those most closely matching proteins in other species. Lastly,
codon bias in genes as described here is again a cumulative
effect, not applicable to individual genes where nucleotide
make-up is used as an altogether different measure, as in the
codon adaptation index for prediction of expression level (34).

We do believe that it is possible and practical to determine
the overall age of a population of pseudogenes taken as a
whole, given that our search characteristics are largely similar
in all the eukaryotes used. Though individual pseudogenes do
not comprise a large enough sample size for this to work on a
smaller scale, except in the few cases where the exact original
gene sequence is preserved elsewhere, it may still be feasible
to segregate pseudogenes into smaller sets based on predicted
age. If one accepts the make-up of genes and non-coding
DNA—both codons and residues—as relatively constant over
time, an average figure for the origin of disablements or
reverse transcription might be calculated based on rates of
mutation and the divergence from genes.
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