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Abstract

Abouheif adapted a test for serial independence to detect a phylogenetic signal in phenotypic traits. We provide the exact analytic

value of this test, revealing that it uses Moran’s I statistic with a new matrix of phylogenetic proximities. We introduce then two new

matrices of phylogenetic proximities highlighting their mathematical properties: matrix A which is used in Abouheif test and matrix M

which is related to A and biodiversity studies. Matrix A unifies the tests developed by Abouheif, Moran and Geary. We discuss the

advantages of matrices A and M over three widely used phylogenetic proximity matrices through simulations evaluating power and type-I

error of tests for phylogenetic autocorrelation. We conclude that A enhances the power of Moran’s test and is useful for unresolved trees.

Data sets and routines are freely available in an online package and explained in an online supplementary file.

r 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In the last decades, phylogeny has been more and more
often recognized as a potential confounding factor when
comparing the states of traits among several species. It is
now widely accepted that given the phylogenetic links
among species, species values may not be independent data
so that the phylogenetic context should be taken into
account when assessing the statistical significance of cross-
species patterns (Martins and Hansen, 1997).

In this context, Abouheif (1999) introduced a diagnostic
test for phylogenetic signal in comparative data. It derives
from a test for serial independence (TFSI) developed
originally by von Neumann et al. (1941) in a non-
e front matter r 2007 Elsevier Inc. All rights reserved.
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phylogenetic context. The TFSI detects dependences in a
sequence of continuous observations by comparing the
average squared differences between two successive ob-
servations to the sum of all successive squared differences.
Abouheif (1999) proposed an adaptation of this test for
phylogenies, by remarking that any single-tree topology
can be represented in T different ways. Each representation
is obtained by rotating the nodes within a phylogenetic
topology, that is to say by permuting the branches
connected to nodes in the original phylogeny (Figs. 1A
and B). Such a rotation procedure results in changes in the
ranking of the tips without changing the topology. Each
rotation of the nodes results in a specific sequence of the
species and thus in a specific sequence of the values taken
by these species for a phenotypic trait under study
providing therefore a sequence of continuous observations.
The TFSI’s statistic can thus be calculated for each
rotation. Abouheif’s (1999) test consists of taking Cmean

as a statistic, the mean of TFSI’s statistics calculated on all
(or merely a random subset of all) the T possible
representations of the tree topology.

www.elsevier.com/locate/tpb
dx.doi.org/10.1016/j.tpb.2007.10.001
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Fig. 1. Description of Abouheif’s statistic: (A) Hypothetical phylogenetic tree with four species together with the values taken by the four species for a

theoretical trait. These values are given by a Cleveland (1994) dot plot. The scale is horizontal; (B) The set of equivalent representations of the tree

topology with the corresponding Ci values; (C) The matrix A associated with the hypothetical phylogeny; (D) Values taken by the TFSI’s statistic Cmean

and Moran’s statistic applied to A. These two indices are equal.

S. Pavoine et al. / Theoretical Population Biology 73 (2008) 79–9180
In this paper, we revisit the test introduced by Abouheif
(1999), demonstrating that its corresponding statistic uses a
Moran’s (1948) I statistic, initially developed for spatial
analyses but introduced in phylogenetic analyses by
Gittleman and Kot (1990). After the background on the
analyses of spatial autocorrelation, we demonstrate that
Abouheif’s (1999) test unifies two schools of thought
developed around Moran’s (1948) and Geary’s (1954) work
(Cliff and Ord, 1981). We propose redefining Abouheif’s
statistic for positioning it among other measures developed
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in other contexts especially in conservation biology. In
addition to a mathematical formalism, this redefinition
allows us to provide a biological interpretation of this
statistic, previously based on node rotations, a process
leading to an approximate value of a more explicit statistic.
We introduce then a new phylogenetic proximity matrix
(Matrix A) derived from Abouheif’s statistic. It does not
rely on branch lengths of the phylogeny; rather, it focuses
on topology. We define this matrix analytically for all
phylogenies (resolved or unresolved), independently of the
trait under study. It has excellent statistical features that
are presented and discussed compared to three phyloge-
netic proximity matrices previously used in comparative
studies. Once again the analytic definition of this matrix
allows us to place it among other measures developed in
both evolutionary biology and conservation biology. This
formalisation leads us to introduce a second matrix (M),
based on May (1990)’s propositions for measuring the
taxonomic distinctiveness of a set of species. The perfor-
mances of Moran’s test with A and M in terms of power
and Type-I error are compared with the performances of
Moran’s test used with previously defined matrices of
phylogenetic proximities.

2. Material and methods

2.1. Data

First a simple, theoretical data set (Fig. 1) contains four
hypothetical species and will serve to facilitate the
description of Abouheif’s statistics. A total of 22 trees
were used for computer simulations. We first defined trees
according to the following models: the symmetric model
which provides trees with equal branch length among
nodes and 2n tips, where n is the number of bifurcations;
the comb-like model which generates trees in which the tips
are spread out like the teeth of a comb; Yule model which
assumes that all species are equally likely to speciate. Trees
have been generated from the three models with the
following numbers of species: 8, 16, 32, 64, 128, 256. Four
real trees have also been added to the simulations. The
objective was to obtain a variety of tree shapes. All both
are available in the packages ade4 and ape from the R Core
Development Team 2007. We considered three small sized
phylogenies: a 17-taxa maple phylogeny (data ‘maples’ in
ade4 obtained from Ackerly and Donoghue (1998)), a
18-taxa lizard phylogeny (data ‘lizards’ in ade4 obtained
from Bauwens and Dı́az-Uriarte (1997)), a 19-taxa bird
phylogeny (data ‘procella’ in ade4 obtained from Bried
et al. (2003)). Finally we applied simulations to a 137-taxa
bird phylogeny to study statistical performance on large
sample sizes (data ‘bird.families’ in ape obtained from
Sibley and Ahlquist (1990)).

Phenotypic trait data were generated using an Ornstein–
Uhlenbeck (OU) process with functions available in the
package ouch from the R Core Development Team 2007.
The phenotype is held near a fixed optimum by a force
measured by a parameter named a. When aE0, the OU
process approximates the Brownian motion model. When a
increases, the data become more and more independent.
We scaled branch lengths on all phylogenies so that the
maximum length from root to tips is equal to 1, and let a
vary from 0, 1, 2 to 10 (Diniz-Filho, 2001). The OU model
involves two other parameters. The first one (y) is the value
of the optima. We fixed y ¼ 0. The second parameter (s)
measures the standard deviation expected at each genera-
tion due to random evolution along the branches of the
phylogeny. We fixed s ¼ 1. For the comb-like model, the
simulations were performed on the ultrametric tree
(pendant edges regularly increases along the comb leading
to the alignment of the tips on one line).

2.2. Background: discrepencies between Moran’s and

Geary’s statistics in spatial analyses

Several tests for phylogenetic signal use methods created
for the analysis of spatial data (Cheverud and Dow, 1985;
Cheverud et al., 1985; Gittleman and Kot, 1990; Rohlf,
2001). Several measures of spatial autocorrelation exist in
the literature. They quantify the degree to which the value
of a quantitative trait in a location is correlated to its value
in neighboring locations. Here we focus on two widely used
statistics: Moran’s (1948) I and Geary’s (1954) c. We
present below these two statistics and show how they can
be used to measure phylogenetic autocorrelation.
In the measurement of spatial autocorrelation, the first

step is the description of the neighboring relationships by
means of a graph. The next step is the translation of these
defined relationships into a matrix of neighboring relation-
ships D, whose general term dij is equal to 1 if individuals i

and j are neighbors and 0 if they are not. Let R ¼ diag
{r1, r2,y, rn} be the diagonal matrix containing the row
sums ri ¼

Pn
j¼1dij for D. Denote x ¼ (x1, x2,y, xn)

t the
values taken by a given trait X for each of the individuals, x̄

the average value and z ¼ (z1, z2,y, zn)
t the corresponding

standardized values of the trait X:

zi ¼ ðxi � x̄Þ

, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

k¼1

ðxk � x̄Þ2

s
.

Moran’s I and Geary’s c are defined as

I ¼
ztDzPn

i¼1

Pn
j¼1dij

and c ¼
n� 1

n

ztðR� DÞzPn
i¼1

Pn
j¼1dij

.

In a phylogenetic context, instead of individuals we have
taxa, say species. Because the phylogenetic links among
species depends on ancestry and evolutionary time, a
matrix of phylogenetic proximity is usually not reduced to
binary values (1 ¼ neighbor, 0 ¼ not neighbor, Gittleman
and Kot, 1990). In fact defining such binary values would
mean to define a finite number of clades in the trees, and
declare that all species from a single clade are neighbor
and two species belonging to two different clades are
not neighbors, which would considerably reduce the
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possibilities for defining phylogenetic proximities. There-
fore, we use the generalized version of Moran’s and
Geary’s statistics (Upton and Fingleton, 1985) replacing
the binary matrix D with a proximity matrix W ¼ [wij],
where wijX0 and wij ¼ wji.

We will test the null hypothesis (H0) of no phylogenetic
autocorrelation under the assumption that the observa-
tions are random independent drawings from one
(or separate identical) population(s) with unknown dis-
tribution function. A non-parametric test is defined. For a
given trait X, the observed values (x1, x2,y, xn) are
randomly permuted around the species, while W is kept
unchanged. It is assumed that each species is equally likely
to receive a value from (x1, x2,y, xn). For each
permutation, the statistic I (respectively c) is calculated.
The proportion of randomized I (respectively c) higher
(respectively lower) than the observed I (respectively c)
indicates whether the observed I (respectively c) is
improbable enough to reject the null hypothesis that there
is no phylogenetic autocorrelation in the data. The choice
of matrix W is not without consequences. It implies a
model of evolution and will influence the power of the test.

These two statistics I and c either in their original D or in
their generalized W form are at the core of two schools of
thought. The first school advocates the advantages of
Geary’s c statistic, stating for example that c is more
sensitive to the absolute differences between pairs of
values, whereas I is more sensitive to extreme values
(Jumar et al., 1977). The second school advocates the
advantages of Moran’s I statistic, mainly because Cliff and
Ord (1981) demonstrated that I is more powerful than c,
that is to say the probability of rejecting H0 given that H1 is
effectively true is higher when I is used rather than c.
Actually, the segregation in two distinct schools relies more
on mathematical properties than on their consequences for
the results of the tests. When applied to real data, the
results obtained either by I or by c are very similar
(Cliff and Ord, 1981, p. 170; Upton and Fingleton, 1985).

Thioulouse et al. (1995) provided some reconciliation
between these two statistics, by applying two modifica-
tions. First Geary’s statistic considers variance computed
with 1/(n�1) rather than 1/n whereas Moran’s statistic uses
the latter. Therefore Thioulouse et al. suggested to unify
the use of variances by dividing Geary’s index by (n�1)/n
leading to

cn ¼
ztðR�WÞzPn

i¼1

Pn
j¼1wij

,

while I is unchanged. Secondly they introduced a vector of
neighborhood weights to standardize the data: let r�i ¼Pn

j¼1wij

.Pn
i¼1

Pn
j¼1wij be the weight attributed to species i,

zi ¼ xi �
Xn

j¼1

r�j xj

 !, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

k¼1

r�k xk �
Xn

j¼1

r�j xj

 !2
vuut

leading to I* and c�n. In a phylogenetic context, we will call
the weights r�i ‘‘relatedness weights’’. Thioulouse et al.
(1995) demonstrated that these two modifications unify
Moran’s and Geary’s concepts with the simple relationship
I� þ c�n ¼ 1. The consequence is that the tests based on
either I* or c�n are identical and the two measures are
complementary: I* measures local correlation while c�n
measures local variation. However, the introduction of
these relatedness weights r�i is not without consequences for
the results of the tests. Indeed, the weights r�i are higher for
species close in average from all others in the tree, which is
characterized by more internal nodes, speciation events
between them and the root node, that is to say, species
belonging to species-rich clades. As a result, the isolated
couples of species in a phylogenetic tree have much less
influence on test results, while, because they are isolated
from the rest of the tree, their similarities with one another
together with their deferences from the rest of the species
would reinforce a phylogenetic signal.
We will show in the three next sections that a formal

definition of Abouheif’s (1999) test unifies Abouheif’s,
Moran’s, and Geary’s tests, this time giving all species
equal weights.
2.3. Presentation of Abouheif’s test

Abouheif’s (1999) Cmean statistic is defined as

Cmean ¼ 1�
1
T

PT
i¼1Ci

2
Pn

j¼1ðxj � x̄Þ2
,

where Ci ¼
Pn�1

j¼1 xKiðjÞ � xKiðjþ1Þ

� �2
. In this formula xKi

ðjÞ

denotes the observed phenotypic trait for the species Ki (j).
Imagine that the tree topology is displayed with all the tips
aligned with one column as in Figs. 1A and B. The function
Ki represents the tips’ order for a given representation i of
the tree topology from the top of the column to its bottom.
For example, on the first topology of Fig. 1B at the top left-
hand corner, the first species, ‘‘species a’’, is placed at the
third position in the column of tips’ letters, that is to say
K1(3) ¼ 1. In the 12th which is the last topological
representation at the bottom right-hand corner of this
Fig. 1B, ‘‘species a’’ is placed at the second position, that is
to say K12(2) ¼ 1. When the number of tips increases, it
quickly becomes impractical to manage all the possible
representations. Abouheif (1999) considers then an ap-
proximate solution by sampling a subset of 2999 random
rotations of the topology (with rotated nodes), using a
program called ‘Phylogenetic Independence’ developed by
J. Reeve and E. Abouheif and available at http://
biology.mcgill.ca/faculty/abouheif/. The statistic (Cmean)
serves to test for the null hypothesis of no phylogenetic
autocorrelation (hypothesis H0). The non-parametric test
of H0 proposed by Abouheif (1999) is close to those
proposed for Moran’s and Geary’s statistics (Cliff and Ord,
1981). It consists of randomly permuting the original
values (x1, x2,y, xn) 999 times so that the species’ values
are randomly placed on the tips of the original phyloge-
netic topology. For each permutation, the statistic Cmean is

http://biology.mcgill.ca/faculty/abouheif/
http://biology.mcgill.ca/faculty/abouheif/
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calculated. This procedure is done repeatedly until a
distribution of Cmean is obtained. The number of rando-
mized Cmean higher than the observed Cmean indicates
whether the observed Cmean is improbable enough to reject
the null hypothesis that there is no phylogenetic auto-
correlation in the data.
2.4. Abouheif’s test turns out to be a Moran’s test

We discovered that Abouheif’s test turns out to be an
application of Moran’s test with a special phylogenetic
proximity matrix A (Fig. 1C and D). We show below that
Cmean can be rewritten as a Moran’s I statistic. We
demonstrate that the test proposed by Abouheif leads to
a new matrix of phylogenetic proximity. Indeed, the Cmean

can be rewritten as

Cmean ¼ 1�

Pn
i¼1

Pn
j¼1aijðxi � xjÞ

2

2
Pn

i¼1ðxi � x̄Þ2
,

where aij is the general term of a phylogenetic proximity
matrix A. Each off-diagonal term aij is equal to the
frequency of rotations of the nodes which put species j just
behind species i. The values of the diagonal terms of A do
not change Cmean because aii(xi�xi)

2
¼ 0, whatever aii. We

are thus free to choose the diagonal values that we think
most appropriate. We choose that each diagonal term aii is
equal to the frequency of representations which put species
i at one extremity of the sequence of the tips, i.e. after all
the other species. This choice leads to

Pn
j¼1aij ¼ 1. Matrix

A is thus symmetric and each row, as well as each column,
has a sum equal to 1. With matrix A the relatedness weights
are all equal to r�i ¼ 1=n so that means and variances in
Abouheif’s test are unweighted. This matrix A has the
following interesting properties. It is a n� n matrix of
components aij satisfying aij ¼ aji, aij40 and

Pn
j¼1aij ¼ 1.

By verifying this property, matrix A is said to be ‘‘doubly
stochastic’’.

The row weights associated with A are thus all equal to
1/n and

Pn
i¼1

Pn
j¼1aij ¼ n. Consequently, it can be shown

that

Cmean ¼ 1�

Pn
i¼1

Pn
j¼1aijðzi � zjÞ

2

2n

¼ 1�

Pn
i¼1z2i �

Pn
i¼1

Pn
j¼1aijzizj

n

and thus

Cmean ¼ 1�
ztðIn � AÞz

n
¼ 1�

ztðInÞz

n
þ

ztAz

n

¼ 1�
ztðInÞz

n
þ

ztAzPn
i¼1

Pn
j¼1aij

,

where In denotes the identity matrix. Given that zt(In)z ¼ n,

Cmean ¼
ztAzPn

i¼1

Pn
j¼1aij

.

As a result, Cmean is equal to Moran’s I when one choose
matrix A as a proximity matrix (see Appendix A for more
explanations). Because A is doubly stochastic, using A in
Moran’s I leads to I+cn ¼ 1.
2.5. Description of the new matrix of phylogenetic

proximity (A)

For unrooted trees, the rotation of nodes in a tree is
called cyclic permutation. For a given cyclic permutation
the arrangement of the set of leaves is called ‘‘cyclic
ordering’’. Cyclic permutations are studied to compare
trees and to analyze tree metrics (functions defining
distances between tips, Semple and Steel, 2004).
We can show now that matrix A has quite a simple

analytic expression for all phylogenies, whether resolved or
not (demonstration in the Appendix B):

aij ¼
1Q

p2Pij
ddp

; for iaj and aii ¼
1Q

p2PiRoot
ddp

.

For a species i, aii is therefore the inverse of the product
of the number of branches descending from each node
from the species to the root. For a couple (i, j), aij is the
inverse of the product of the number of branches
descending from each node in the path connecting i and j.

Now that A has been analytically resolved, the test
proposed by Abouheif can be computed without referring
to the cyclic permutation.
Furthermore, we presented above the diagonal terms aii

as the residuals of a processus to render matrix A doubly
stochastic, but they are more than that. They have a
biological meaning: they measure originality sensu Pavoine
et al. (2005). The originality of a species provides a single-
species measure of cladistic distinctiveness. It measures
how evolutionarily isolated a species is relative to other
members (tips) of a phylogenetic tree. The more a species is
in average distant from the other, the more it is original.
May’s (1990) provided such an index of originality whose
formula is exactly aii except the product is replaced by a
sum:

mii ¼
1P

p2PiRoot
ddp

.

The first consequence of this relation between matrix A

and the indices of phylogenetic originality is that matrix A

contains elements developed for ecological studies, evolu-
tionary studies and conservation biology, when the need
for establishing bridges between these three disciplines has
been pointed out as urgently necessary. The second
consequence is that we can now define a second matrix
(M) of phylogenetic proximities, where

mij ¼
1P

p2Pij
ddp

; for iaj and mii ¼
1P

p2PiRoot
ddp

.

Note that M is not doubly stochastic.
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We provide then a formalization of Abouheif’s test both
in mathematical and biological terms.

Redefinition of Abouheif Test: The Abouheif’s test is a
Moran’s test with a specified matrix of phylogenetic
proximity A:
�
 The non-diagonal values of A, aij, measure the proximity
between two species i and j and are equal to the inverse
of the product of the number of branches descending
from each interior node in the path connecting i to j.

�
 The diagonal values of A, aii, measure the originality of

species i as the inverse of the product of the number of
branches descending from each interior node in the path
connecting i to the root of the tree.

Semple and Steel (2004) introduced a calculation under
the same realms as matrix A but for unrooted trees: for
unrooted trees, the proportion of circular orderings for

which j immediately follows i is lij ¼
Q

p2Qij

ðddpÞ
�1 for i6¼j,

where Qij is the set of interior nodes in the path connecting
i and j. Fixing lii ¼ 0, we obtain a matrix of phylogenetic
proximity for unrooted tree. Denote K the matrix [lij]. By
definition, K is doubly stochastic.

Semple and Steel (2004) discovered an interesting
property for K: let’s dij be the sum of the branch lengths
in the path connecting i and j, then

PD ¼
X

ij

lijdij

is the sum of all the branch lengths on the tree, which is a
measure of phylogenetic diversity (Faith, 1992), used in
conservation biology.

Proposition. Consider d�ij ¼ dij for i 6¼j and d�ii ¼
P

jjPij¼

fRootgajjdijddRootðddRoot � 1Þ, then PD ¼
P

ijaijd
�
ij.

(Proof in Appendix C).

Roughly speaking, d�ii concerns for species i ‘‘what
happens on the other side of the root’’.

Once again, this result contributes to filling in the gap
between ecology, evolutionary biology and conservation
biology.

2.6. Estimating the effect of the matrix of phylogenetic

proximity in Moran’s test

For each simulated tree, we calculated the matrix A. We
chose to compare the use of matrix A in Moran’s test with
four other matrices of proximities among pairs of species,
which were proposed for trees with equal branch lengths.
The first one is the new matrix M. With the second one,
named B, the proximity between the two species is the
number of internal nodes, or taxonomic levels from the
first common node to the root. When branch lengths are
available and summed rather than counting the numbers of
nodes, B is the matrix of phylogenetic variance–covariance
given a Brownian motion model of character changes
(e.g. Felsenstein, 1985). For the third matrix, denoted C,
Cheverud and Dow (1985) first defined the 4-point metric
distance dij between the two species by the number of
internal nodes connecting the two species to a common
ancestor. According to Cheverud and Dow (1985) and
Cheverud et al. (1985), we should consider in the
phylogenetic tree a level at which species are said unrelated,
and if two species are unrelated, a zero is entered in matrix
C. We considered that the species connected only at the
root node are unrelated, but other choices could be made,
for example Cheverud et al. (1985) truncated the tree at the
family level in a taxonomy. The proximity is then defined
as 1/dij if dij6¼0, and 0 elsewhere. The particularity of this
matrix is the zero values on the diagonal, while the
proximity of a given species with itself should be
maximum. Matrix C was used by Cheverud and Dow
(1985) in the phylogenetic autoregressive method which
they developed for distinguishing between the phylogenetic
effect and the specific effect on variation in trait values:
y ¼ rCy+e, where y is the normalized vector of observed
data, r is called the ‘‘autoregressive coefficient’’. For the
fourth matrix called D, we apply the exponent a proposed
by Gittleman and Kot (1990; see Martins and Hansen,
1996) to Cheverud and Dow (1985) proximity matrix. In
the phylogenetic autoregressive method, the values of both
a and r were obtained by maximum likelihood or more
correctly by least squares (Rohlf, 2001). The objective of
using a was to improve the performance of the phyloge-
netic autoregressive method developed by Cheverud and
Dow (1985) and Cheverud et al. (1985) in distinguishing
between the phylogenetic effect (rCy) and the specific effect
(e) on variation in trait values. Owing to Martins and
Hansen (1996) another objective was to best stretch and
shrink the phylogeny. Here, we used the value of a which
maximizes Mantel (1967) correlation among A and D. One
of our objectives is to highlight the high congruence among
A and D. We also studied the effect of a by varying its value
from 0.1 to 3 using a step equal to 0.1, from 3 to 10 using a
step of 1 and from 10 to 100 using a step of 10.
Moran’s tests were performed on the 22 trees, containing

four real trees, six symmetric trees, six comb-like trees and
six yule-model trees. We performed first Type I error tests.
For a tree with n species, 1000 data sets of size n were
independently and randomly drawn from a normal
distribution N(0,1). We applied a Moran test for each
simulated data set and measured the type I error as the
percentage of significant tests at the nominal 5% level. We
performed then a series of power tests. For a tree with n

species, and a fixed value of the constraining force, 1000
data sets of size n were simulated from a OU process, as
indicated in Section 2.1. The power was then measured as
the percentage of significant tests at the nominal 5% level.
For each tree and each simulated trait, Moran’s tests are

realized with the statistic I* including species relatedness
weights, and with 1000 random permutations of the
values (x1, x2,y, xn) around the species. All computations
and graphical displays were carried out using R Core
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Development Team 2007, with both pre-programmed and
personal routines. The data and routines for performing
Moran’s test are available in the ‘ade4’ package at http://
lib.stat.cmu.edu/R/CRAN/ (Chessel et al., 2004). Instruc-
tion guidelines are available in the supplementary file.

3. Results

We use the following notation for the rest of the text:
MTA, MTM, MTB, MTC, MTD denotes Moran’s test when
I is measured with matrices A, M, B, C, D, respectively.
What emerges from these simulations (Fig. 2) is that except
for the comb-like model, the use of matrix B in Moran’s I

provides a less powerful test. With the Yule model, our
simulations highlight a far lower power of I when it is used
with B. With 256 species and a constraining force a ¼ 10
for the OU process, the power of MTB is estimated equal to
0.368, while the estimated power of the four other tests
varies from 0.962 to 0.985. With most of the trees, the
power of MTA and MTD are very close, and for most of the
trees except the comb-like trees, the power of Moran’s test
increases in the following order: MTBoMTMoMTCo
(MTAEMTD). For the comb-like model, the power of
Moran’s test increases in the inverse order: MTAo
MTDoMTCoMTMoMTB, but the power of the five tests
are in that case very close.(Fig. 3)

The type I error of all tests are close to the nominal 5%
level (Table 1).

The five matrices differ in how they value a high
proximity and a low proximity and the gap between them.
The coefficients of variation (CV) for non-diagonal values
of these five matrices are in average (over the 22 trees): 3.56
for matrix A, 2.58 for D, 1.40 for C, 0.97 for B, and 0.93 for
M. Matrix D and, above all, matrix A provides the most
contrasting values (high CV). Their CV highly increases
with the number of species (Fig. 4). This difference in CV
appears in the graphical representations of the matrices
(Fig. 5). Furthermore, one can observe in Fig. 5 that the
values near the diagonal for A and D (which are the
estimates of the proximities among close species) are not
identical but very close to each others. Despite D provides
more contrast between very close species and less related
species, only matrix A also provides clear distinctions
among the proximities of less related species (values far
from the diagonal). Note also that one of the differences
between A, M and B, C, D is that A and M never consider
that species connected only at the root node of the tree are
not related.

Regarding the effect of an exponent on C, let MTCa be
the Moran’s test used with Ca. For all trees studied, the
power of MTCa is first enhanced when a increases from 0.1
to reach a maximum for a value of a comprised between 1
and 2 in all our examples (Fig. 3). Then the power regularly
decreases. In all cases, D is at or very close to the maximum
power of MTCa over a.

We highlighted that the diagonal terms of matrix A are
measures of originality (single-species measure of cladistic
distinctiveness) sensu Pavoine et al. (2005). For all our 22
trees (Fig. 6), the rank correlation between the diagonal
values aii of matrix A and May (1990)’s index (diagonal
values of matrix M), one of the main indices of species
originality, is equal to 1. The difference between the
formulas of the aii and the mii is the use of a product
instead of a sum. The consequence is that the aii decreases
more quickly with the number of nodes between i and the
root. The advantage of this steeper decrease is that the
most original species are more emphasized (Fig. 6). By
definition, aii is equal to the frequency of representations
which put species i at one extremity of the sequence of the
tips, i.e. after all the other species. Consequently, another
advantage of the aii is that

Pn
i¼1aii ¼ 1 while

Pn
i¼1mii

depends on the tree shape and size.

4. Discussion

4.1. Rediscovering the link between Moran’s I and Geary’s c

Because A is a doubly stochastic matrix, when using A as
a proximity matrix, Moran’s I is equal to Abouheif’s Cmean

and to one minus Geary’s cn, thus the three statistical
methods are brought back together in the same theoretical
framework. In that case, the two statistics I and cn provide
complementary information. The statistic I measures the
local autocorrelation, which is the degree to which related
species are close from each other in a given trait, and the
statistic cn measures the local variability, that is to say the
degree to which related species differ from each other.

4.2. Improving Abouheif’s test and giving it new purposes

We improved Abouheif’s test by providing its exact
analytical value, while it was previously calculated by an
approximate algorithm. We centered the test on a new
matrix of phylogenetic proximities (A). This mathematical
formalization leads to a clear biological definition of the
Abouheif test: Abouheif test measures the proximity
between two taxa i and j as the inverse of the number of
branches descending from each interior node in the path
connecting i to j the root of the tree. The proximity depends
thus on the interior nodes in the path connecting i to j, and
was previously approximated by a technical approach
referring to the percentage of time i and j were found next
to each other in the set of all cyclic permutations of the
tree. The reference to cyclic permutations was thus
unnecessary and can be thought as technical, even make-
ship job and disturbing because a cyclic permutation does
not change topology. Despite that, cyclic permutations
were here at the foundation of the three matrices A, M
and K. Research on cyclic permutations has already
proved useful for studies on tree metric and tree
reconstitutions (Semple and Steel, 2004). A tree is
mechanically embedded in a plane which implicitly
demands to choose a way of arranging tips (a circular
ordering of the tips). The existence of a finite number of

http://lib.stat.cmu.edu/R/CRAN/
http://lib.stat.cmu.edu/R/CRAN/
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Fig. 2. Power tests for (A) the symmetric model, (B) the comb-like model, (C) the Yule model and (D) the observed, real trees. Simulations were done

separately for each sample size from n ¼ 8 to 256 species. The legends for the line symbols, drawing and color (black or gray) for the five matrices of

phylogenetic proximity (A, M, B, C and D) are given in the box on the bottom left-hand corner. The power is given in the ordinate axis as a function of

alpha, the constraining force of the OU process. Note that the powers obtained with A and D are very close so that the curves for A and D are often

superimposed.
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distinct circular orderings for a tree (Semple and Steel,
2004) constitutes one of the properties of the tree object
which merits our attention. Abouheif’s intuition can
reinforce an underestimated interest of the research on
cyclic permutations for evolutionary and biological con-
servation studies.
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Fig. 3. Effect of the exponent g in Cg proposed by Gittleman and Kot (1990) on the power of Moran’s test used with Cg for (A) the symmetric

model, (B) the comb-like model and (C) the Yule model. The black square indicates the position of D ¼ C
b where corðCb;AÞ ¼ maxg½corðC

g;AÞ�. The open
circle indicates the position of C. The graphs are given for different values of the constraining force from a ¼ 0 to 10. The precise value of a for a given

graph is given on the bottom right-hand corner of the graph.

Table 1

Average type I error for Moran’s test at the nominal 5% level (with

standard deviation in brackets)

Symmetric Comb-like Yule Real-trees

A 4.68 (0.44) 4.53 (0.22) 4.65 (0.61) 4.44 (0.59)

M 4.32 (0.59) 5.35 (1.21) 5.15 (0.43) 4.88 (0.35)

B 4.83 (0.32) 4.25 (0.96) 4.57 (0.68) 5.05 (0.99)

C 4.78 (0.41) 4.93 (0.88) 4.77 (0.76) 4.68 (0.81)

D 4.83 (0.63) 5.15 (0.72) 4.57 (0.55) 4.75 (0.83)

All values are given as percentages. The matrix used with Moran’s test is

given in the first column. For the symmetric, the comb-like and the Yule

models, values are averaged over the six sample sizes. For the real trees,

values are averaged over the four phylogenies considered.
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4.3. Comparison between A, M and currently used proximity

matrices

The following kinds of methods have been recommended
when suspecting phylogenetic dependence. A first group of
methods aims to test for a phylogenetic signal in each of
the phenotypic traits under study, whatever the shape
of this signal for example by measuring a correlation
among sister-species (Gittleman and Kot, 1990). The
second group of methods aims to describe the link between
a phylogenetic tree and the states of one or several traits,
either by searching at which level(s) in a phylogenetic tree,
one can detect phylogenetic signal with methods such as
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Fig. 4. Coefficients of variation (CV) for the five matrices A,M, B, C and D for (A) the symmetric model, (B) the comb-like model and (C) the Yule model.

The legends for the line symbols, drawing and color (black or gray) for the five matrices of phylogenetic proximity (A, M, B, C and D) are given in the

boxes on the right side of the figure. Each graph provides CV as a function of an index of the number of species on a logarithmic scale.

Fig. 5. Differences among the five matrices of phylogenetic proximities for (A) the symmetric model, (B) the comb-like model and (C) the Yule model. The

name of the matrices is given in boxes on the right-hand corner of the figures. Each value in the matrix is represented by a square. The larger the square the

higher is the value. Species are ordered by rows and columns according to the phylogenetic tree which is given.
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nested ANOVA (Crook, 1965; Clutton-Brock and Harvey,
1977, 1979, 1984), correlogram (Gittleman and Kot, 1990;
Rohlf, 2001, 2006), and orthonormal transform (Giannini,
2003; Ollier et al., 2006) or by modeling the evolution of
the trait supposing that the real causes involving phyloge-
netic inertia and adaptation are precisely known (Martins
and Hansen, 1996; Blomberg et al., 2003; Bonsall and
Mangel, 2004; Bonsall, 2006). A critical step in all these
approaches is the proper specification of a phylogenetic
proximity matrix. Indeed, many possibilities exist depend-
ing on whether branch lengths are known and on the model
of macroevolution used, for examples pure neutral model
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Fig. 6. The diagonal values of matrix A are measures of phylogenetic originality: (A) Representation by Cleveland (1994) dot plots of the links between the

diagonal values of A and the diagonal values of M (May’s (1990) index) for the comb-like model, the Yule model, and the four real trees considered in the

text. The congruence among the diagonal values of matrix A and May’s index is high but the differences in the originality values among species are higher

for the diagonal values of matrix A than for May’s index, which leads in (B) to a parabolic shape for the relationship among the diagonal values of matrix

A and May’s index. Note that the diagonal values of A and the values obtained from May’s (1990) index may be small but never null.
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(Brownian motion), stabilizing selection (Ornstein–Uhlen-
beck), directional selection, accelerating and decelerating
Brownian evolution (ACDC) (Blomberg et al., 2003) and
more complex models (Mooers et al., 1999) and it is
difficult to choose among them (Hansen and Martins,
1996).

In this context, matrix A constitutes a useful alternative.
In this paper, we give the exact analytic expression of this
matrix. We prove that it is a symmetric and doubly
stochastic proximity matrix and because it is doubly
stochastic, it unifies Moran’s and Geary’s statistics. We
showed through the power tests, that there may be a strong
effect of the choice of the proximity matrix in Moran’s
non-parametric test. Two main criticisms were raised to
Abouheif’s test: it does not rely on branch length and it is
used due to technical reasons rather than because it relies
on a precise model of character changes. By formalizing
Abouheif’s test we redefined it and clarified its biological
foundations. Regarding the absence of branch length, if
branch lengths are available, one should use them and have
higher power, to the extent that they are accurate. Even if
focusing on nodes means using a rather unlikely model in
which branch lengths are assumed to be equal, the tree
topology is one out of the two key components of this
history.

Unlike B, the matrices A and M we introduced and the
matrices C and D suggested by Cheverud and Dow (1985)
and Gittleman and Kot (1990) are specially designed for
topologies. The advantage of matrices A and D over B, C
and M is that they provide more contrasted species
proximity estimates, which enhances the power of the
tests. Our results showed that most of the time matrix A fits
data sets better than existing matrices of phylogenetic
proximities and when it does not fit better, it fits almost as
well as other matrices. Matrix A and M also have the
advantage of correcting proximities for unresolved trees.
Indeed, for these two matrices the product or sum of the
number of branches descending from nodes are counted
instead of the simple number of nodes (see, May, 1990).
Gittleman and Kot (1990) proposed to add an exponent

to matrix C to best-fit data. This led us to introduce matrix
D with an exponent which maximizes its correlation with
matrix A. We studied the effect of the exponent on C. Let
MTCa be the Moran’s test used with Ca. For all trees
studied, D was at or very close to the maximum power of
MTCa over a. This result reinforces the interest of A as a
powerful matrix.

4.4. Matrix A, M and conservation biology

We emphasized the statistical advantages gained by
using matrix A as a matrix of phylogenetic proximities
among species. Actually the advantages gained by using
matrix A are both statistical and biological, because matrix
A has a biological meaning which has not been explored
with previous matrices of phylogenetic proximity. The
diagonal values of matrix A are important for two reasons:
first because they give the doubly stochastic property to the
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whole matrix A, unifying then Moran’s, Geary’s and
Abouheif’s tests, and second because they are measures of
cladistic originality, that is to say aii is a measure of how
evolutionarily isolated species i is relative to other members
of the phylogenetic tree under study. As we highlighted, the
diagonal values of matrix A have the same capacity as
May’s index (diag(M)) to measure cladistic originality.
They are even more segregating, giving a larger range of
values from the less to the most original species. Conse-
quently, the diagonal values of matrix A can be used as a
powerful alternative to current indices of cladistic origin-
ality when designing conservation priorities.

Moran’s test only uses the non-diagonal values of A and
M. The challenge now is to evaluate the use of these
complete two matrices in more complex analyses, such as
multivariate analysis (cf. Thioulouse et al. (1995) for
ordination under spatial autocorrelation) and comparative
analyses.

In conclusion, the appealing qualities of matrix A are
that it unifies Abouheif’s, Moran’s and Geary’s tests; it
increases the power of Moran’s test; its diagonal values
measures cladistic originality and it contributes to filling in
the gap between evolutionary biology and conservation
biology. The interest of matrix A for a wide variety of taxa
and traits, and for a larger range of evolutionary and
ecological issues has still to be proved but our first results
are encouraging.
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Appendix A. Abouheif’s test is a Moran’s test

We demonstrated in the text that

Cmean ¼
ztAzPn

i¼1

Pn
j¼1aij

.

Let us decompose matrix A into two additive compo-
nents: KA contains the diagonal values of A, and MA the
non-diagonal values (with 0 on the diagonal); hence
A ¼ KA+MA. Moran’s statistics was defined for matrices
with zeros down the principal diagonal. Consider SA ¼Pn

i¼1

Pn
j¼1aij and SMA

¼ 2
Pn�1

i¼1

Pn
j4iaij , then

Cmean ¼
ztKAz

SA

þ
SMA

SA

ztMAz

SMA

.

During the randomization test, when the observed values
(x1, x2,y, xn) are randomly permuted around the species
and SMA

�
SA is a constant. Consequently,
Cmean depends on two components: one linked to the
originalities of the species and one linked to the proximities
of couples of species.
This demonstration is still true for matrix M.
Appendix B. Analytical expression of the proximity

matrix A

We propose to give explicitly the analytical expression of
matrix A. These assertions will be illustrated by way of a
simple theoretical example (Fig. 1).
We will consider the following terminology concerning

the phylogenetic tree. The root is the common ancestor
to the sets L and N of all the l contemporary taxons
(OTUs: operational taxonomic units) and n interior nodes,
respectively (HTUs: hypothetical taxonomic units).
Branches emanate from the root and nodes, tracing the
course of evolution. The definition of A is independent of
branch length and depends only on the topology of the
tree. The minimum spanning path between two taxonomic
units (nodes or tips) defines an ordered set of nodes. For
example in Fig. 1 A, the set Pab ¼ {A} is associated with the
path (a, A, b) that spans species a and b. Similarly, the set
PaRoot ¼ {A, B} defines the hypothetical ancestors asso-
ciated to the path (a, A, B, Root) between species a and the
root of the tree. We denote DDi the set of direct
descendants for node i, including hypothetical descendants
at interior nodes and species at tips. For example, in
Fig. 1A, DDA ¼ {a, b} and DDB ¼ {A, c, d}. Let
ddi ¼ card(DDi) be the number of direct descendants for
node i (ddA ¼ 2 and ddB ¼ 3). The total number of
consistent representations of the tree topology is defined
by the product of rotations associated with each node:
T ¼

Q
i2N

ddi!, where ddi denotes the number of direct

descendants of each node iAN.
Among the set of equivalent representations of the

phylogeny (Fig. 1B), there is at least one representation
that puts tip j just behind tip i. Consider such a
representation and observe what happens if a rotation
occurs at one node pAN. If pePij, all the ddp! rotations
associated with that node do not disturb the respective
position of i and j. On the other hand, if pAPij, only
(ddp�1)! out of the ddp! possible rotations do not disturb
the respective positions of both tips. As the set of node
rotations that put tip j just behind tip i is equal to the set of
equivalent representations that put tip i just behind j,
we deduce the analytical expression aij of the matrix A

(Fig. 1C):

aij ¼
I ij

T
¼

Q
p2Pij
ðddp � 1Þ!

Q
p2N�Pij

ddp!Q
p2Nddp!

¼
1Q

p2Pij
ddp

.

From this expression, we can deduce the diagonal values:

aii ¼ 1�
Xn

j¼1;jai

aij .
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Therefore, the Cmean statistic is equal to Moran’s statistic
applied to the so-defined matrix A (Fig. 1D).

Appendix C. Proof for PD ¼
P

ijaijd
�
ij

Because of the presence of a root in the tree, if
PijafRootg, aij ¼ lij, and if Pij ¼ fRootg aij ¼ lij/ddRoot

and aij ¼ aiiajjddRoot.

PD ¼
X

ij

lijdij

¼
X

ijjPijafRootg

aijdij þ
X

ijjPij¼fRootg

aijddRootdij

¼
X

ij

aijdij þ
X

ijjPij¼fRootg

aijðddRoot � 1Þdij

¼
X

ij

aijdij þ
X

ijjPij¼fRootg

aiiajjddRootðddRoot � 1Þdij

¼
X

ij

aijdij þ
X

i

aii

X
jjPij¼fRootg

ajjdjjddRootðddRoot � 1Þ.

Consider d�ij ¼ dij for i 6¼j and d�ii ¼
P

jjPij¼

fRootgajjdijddRootðddRoot � 1Þ then PD ¼
P

ijaijd
�
ij

For dichotomous trees,

PD ¼
X

ij

aijdij þ
X

i

aii

X
jjPij¼fRootg

2aijdij

Appendix D. Supplementary materials

Supplementary data associated with this article can
be found in the online version at doi:10.1016/j.tpb.
2007.10.001.
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